51 research outputs found

    High Bit Rate Wireless and Fiber-Based Terahertz Communication

    Get PDF
    RÉSUMÉ Dans le spectre électromagnétique, la bande des térahertz s’étend de 100 GHz à 10 THz (longueurs d’onde de 3 mm à 30 μm). Des décennies auparavant, le spectre des THz était connu sous le nom de « gap térahertz » en raison de l’indisponibilité de sources et détecteurs efficaces à ces fréquences. Depuis quelques années, la science a évolué pour faire migrer la technologie THz des laboratoires aux produits commerciaux. Il existe plusieurs applications des ondes THz en imagerie, spectroscopie et communications. Dans cette thèse, nous nous intéressons aux communications THz à travers deux objectifs. Le premier objectif est de développer une source THz de haute performance dédiée aux communications et basée sur les technologies optiques avec des produits commerciaux uniquement. Le second objectif est de démontrer l’utilisation de fibres optiques afin de renforcer la robustesse des communications THz sans fil. Nous débutons cette thèse avec une revue de la littérature scientifique sur le sujet de la communications THz sans fil et filaire. D’abord, nous discutons des deux méthodes communément utilisées (électronique et optique) pour démontrer des liens de communications THz avec leurs avantages et inconvénients. Nous présentons par la suite la possibilité d’utiliser un système de spectroscopie THz pour des applications en communications avec des modifications mineures au montage. Nous présentons ensuite plusieurs applications gourmandes en bande passante qui pourraient bénéficier du spectre THz, incluant la diffusion en continu (streaming) de flux vidéo aux résolutions HD et 4K non compressés. Ensuite, nous discutons de la motivation d’utiliser de longues fibres THz et notamment du fait qu’elles ne sont pas destinées à remplacer les fibres optiques conventionnelles de l’infrarouge, mais plutôt à augmenter la robustesse des liens THz sans fil. En particulier, les fibres THz peuvent être utilisées pour garantir le lien de communication dans des environnements géométriques complexes ou difficile à atteindre, ainsi que pour immuniser le lien THz aux attaques de sécurité. Plusieurs designs de fibres et guides d’onde précédemment démontrées dans la littérature sont discutés avec, entre autres, leurs méthodes de fabrication respectives. Nous discutons ensuite de la possibilité d’utiliser un simple guide d’onde diélectrique et sous-longueur d’onde pour transmettre l’information à un débit de l’ordre de plusieurs Gbps sur une distance de quelques mètres.----------ABSTRACT The Terahertz (THz) spectral range spans from 100 GHz to 10 THz (wavelength: 3 mm to 30 μm) in the electromagnetic spectrum. Decades ago, the THz spectral range is often named as ‘THz gap’ due to the non-availability of efficient THz sources and detectors. In the recent years, the science has evolved in bringing the THz technology from lab scale to commercial products. There are several potential applications of THz frequency band such as imaging, spectroscopy and communication. In this thesis, we focus on THz communications by addressing two objectives. The first objective is to develop a high-performance photonics-based THz communication system using all commercially available components. The second objective is to demonstrate the THz-fiber based communications, which can be used to increase the reliability of THz wireless links. We begin this thesis with a scientific literature review on the subject of THz wireless and fiber-based communications. First, the two different methodologies (all electronics based and photonics-based THz system) that is commonly used in the demonstration of THz communications is discussed along with their advantages and challenges. We then present the flexibility of photonics-based THz system where it is possible to switch it with minor modifications for THz spectroscopic studies and THz communication applications. Several bandwidth hungry applications that demands the use of THz spectrum for next generation communications is detailed. This includes the streaming of uncompressed HD/4K and beyond high-resolution videos, where the THz spectrum can be beneficial. Next, the motivation of using long THz fibers is discussed and we convince the readers that the THz fibers are not meant to replace the fibers in the optical-infrared region but to increase the reliability of THz wireless links. Particularly, the THz fibers can be used to provide connectivity in complex geometrical environments, secure communications and signal delivery to hard-to-reach areas. Several novel fiber/waveguide designs along with their fabrication technologies from the literature are presented. We then show that a simple solid core dielectric subwavelength fiber can be used to transmit the information in the order of several Gbps to a distance of a few meters

    Super-resolution Orthogonal Deterministic Imaging Technique for Terahertz Subwavelength Microscopy

    Full text link
    Terahertz subwavelength imaging aims at developing THz microscopes able to resolve deeply subwavelength features. To improve the spatial resolution beyond the diffraction limit, a current trend is to use various subwavelength probes to convert the near-field to the far-field. These techniques, while offering significant gains in spatial resolution, inherently lack the ability to rapidly obtain THz images due to the necessity of slow pixel-by-pixel raster scan and often suffer from low light throughput. In parallel, in the visible spectral range, several super-resolution imaging techniques were developed that enhance the image resolution by recording and statistically correlating multiple images of an object backlit with light from stochastically blinking fluorophores. Inspired by this methodology, we develop a Super-resolution Orthogonal Deterministic Imaging (SODI) technique and apply it in the THz range. Since there are no natural THz fluorophores, we use optimally designed mask sets brought in proximity with the object as artificial fluorophores. Because we directly control the form of the masks, rather than relying on statistical averages, we aim at employing the smallest possible number of frames. After developing the theoretical basis of SODI, we demonstrate the second-order resolution improvement experimentally using phase masks and binary amplitude masks with only 8 frames. We then numerically show how to extend the SODI technique to higher orders to further improve the resolution. As our formulation is based on the equation of linear imaging and it uses spatial modulation of either the phase or the amplitude of the THz wave, our methodology can be readily adapted for the use with existing phase-sensitive single pixel imaging systems or any amplitude sensitive THz imaging arrays

    Live streaming of uncompressed HD and 4K videos using terahertz wireless links

    Get PDF
    RÉSUMÉ: Taming the Terahertz waves (100 GHz-10 THz) is considered the next frontier in wireless communications. While components for the ultra-high bandwidth Terahertz wireless communications were in rapid development over the past several years, however, their commercial availability is still lacking. Nevertheless, as we demonstrate in this paper, due to recent advances in the microwave and infrared photonics hardware, it is now possible to assemble a high-performance hybrid THz communication system for real-life applications. As an example, in this paper, we present the design and performance evaluation of the photonics-based Terahertz wireless communication system for the transmission of uncompressed 4K video feed that is built using all commercially available system components. In particular, two independent tunable lasers operating in the infrared C-band are used as a source for generating the Terahertz carrier wave using frequency difference generation in a photomixer. One of the IR laser beams carries the data which is intensity modulated using the LiNbO 3 electro-optic modulator. A zero bias Schottky diode is used as the detector and demodulator of the data stream followed by the high-gain and low-noise pre-amplifier. The Terahertz carrier frequency is fixed at 138 GHz and the system is characterized by measuring the bit error rate for the pseudo random bit sequences at 5.5 Gbps. By optimizing the link geometry and decision parameters, an error-free (BER <; 10 -10 ) transmission at a link distance of 1 m is achieved. Finally, we detail the integration of a professional 4K camera into the THz communication link and demonstrate live streaming of the uncompressed HD and 4K video followed by the analysis of link quality

    Fabrication and Characterization of an 8 × 8 Terahertz Photoconductive Antenna Array for Spatially Resolved Time Domain Spectroscopy and Imaging Applications

    Get PDF
    ABSTRACT: Terahertz (THz) technology is promising in several applications such as imaging, spectroscopy and communications. Among several methods in the generation and detection of THz waves, a THz timedomain system that is developed using photoconductive antennas (PCA) as emitter and detector presents several advantages such as simple alignment, low cost, high performance etc. In this work, we report the design, fabrication and characterization of a 2-D PCA array that is capable of detecting both the amplitude and phase of the THz pulse. The PCA array is fabricated using LT-GaAs and has 8 channels with 64 pixels (8 × 8). A novel approach using a spatial light modulator (SLM) to steer and focus the infrared probe beam towards pixels of the PCA array is presented. Each channel records the photocurrent generated by the THz signal (amplitude and phase) separately and frequencies up to 1.4 THz can be detected. Furthermore, the parameters such as directional time delay of the THz pulse, crosstalk between the channels etc., were characterized. Finally, we show that the proposed 2D PCA array design is flexible and can be used for accelerated THz spectral image acquisition
    • …
    corecore